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Abstract. In the present paper we study transitions induced by squeezed light generated by
an optical device as a degenerate parametric amplifier. We adopt the dipole approximation and
approach the problem by path integral methods. The light variables do not appear in the final
propagator as they are integrated over. Using perturbation theory, we calculate the transition
probability from the ground state 1s of the hydrogen atom to the state 3d. Further we obtain
the equation obeyed by a free electron in squeezed light.

1. Introduction

In recent years considerable effort has been made in applying path integral methods in
quantum optics. Certain dynamical groups have been studied [1–5] and the propagators of
particular forms of Hamiltonians [16–18] describing non-classical states have been obtained
exactly [6–11]. Other Hamiltonians can and have been investigated only numerically via
methods such as the Monte Carlo.

On the other hand, certain non-classical states have been achieved in the laboratory.
For almost a decade quadrature-squeezed light has been produced experimentally. The
interaction of non-classical light with matter appears as a challenging area of research.

We are going to study the influence of non-classical and particularly finite-bandwidth
squeezed light generated by a degenerate parametric amplifier on an atomic or molecular
bound state [12–15].

The paper proceeds in the following order. In section 2 we describe the full Hamiltonian
of an electron in the non-classical field and in the presence of a potential to be specified at
will, we give the full propagator and integrate over the field variables. Then we discuss the
propagator obtained and obtain the equation of motion of a free electron in squeezed light.
In section 3 and by application we derive the transition rate, from the state 1s to the state
3d of the hydrogen atom under the action of the squeezed light.

2. System Hamiltonian and path integration

The full HamiltonianH can be written as the sum of three terms. The electron Hamiltonian,
He in the potentialV (r), the squeezed field oneHf and the interaction termHI :

H = He+Hf +HI . (1)
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Particularly the electron Hamiltonian is given as

He = p
2

2
+ V (r). (2)

The Hamiltonian of squeezed light has the form

Hf(t) = ω(t)a+a + f (t)a2+ f ∗(t)a+2. (3a)

We note that in the case of production of squeezed light by a degenerate parametric
amplifier the squeezed light Hamiltonian is given as

Hf(t) = ωa+a + κ(e−2iωta2+ e−2iωta+2). (3b)

Finally, the interaction Hamiltonian in the length form is given as

HI = −er ·Ef (r). (4)

The second quantized form of the field operator of squeezed light is given as

Ef (r) = 1√
V

il(ω)ε̂[â ei(k·r−ωt) − â+ e−i(k·r−ωt)] (5)

whereV is the quantization volume andl(ω) is a real function of frequency given as:
l(ω) = √ω/2.

In the dipole approximation (eik·r ≈ 1 in (5)) which we adopt here, since the spatial
dimension of the atom radiated is much less than the wavelength of the electromagnetic
field inducing the transition, the field operator can be written as

Ef = 1√
V

il(ω)ε̂(â e−iωt − â+ eiωt ) (6)

andHI takes the form:

HI = − 1√
V

iel(ω)ε̂ · r(a e−iωt − a+ eiωt ). (7)

Now we combine the terms (3) and (7) involving field variables in the term:

H0(a
+, a; t) = Hf +HI = ω(t)a+a + f (t)a2+ f ∗(t)a+2+ g(t)a + g∗(t)a+ (8)

where

g(t) = − 1√
V

iel(ω)ε̂ · r(t) e−iωt . (9)

The propagator corresponding to (8) has been derived via path integral methods by
Hillery and Zubairy [6]. Here we use their result to obtain the full propagator corresponding
to H , with the field variables appearing in (8) integrated, thus resulting in a path integral
of only the spatial variables. It is given by the expression

K(αf , rf ;αi, ri; t) =
∫ r(t)=rf

r(0)=ri
Dr(t)

× exp



−i
∫ t

0
dτ

[
ṙ2(τ )

2
− V (r(τ ))

]
− i

∫ t

0
dτ [2f (τ)X(τ)

+f (τ)Z2(τ )+ g(τ)Z(τ)] − 1

2
(|αf |2+ |αi |2)

+Y (t)α∗f αi +X(t)(α∗f )2− iα2
i

∫ t

0
dτf (τ)Y 2(τ )+ Z(t)α∗f

−iαi

∫ t

0
dτ [g(τ)+ 2f (τ)Z(τ)]Y (τ)


(10)
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whereX(t) satisfies the following Riccati differential equation:

dX

dt
= −2iω(t)X − 4if (t)X2− if ∗(t) (11)

with initial conditionX(0) = 0 which can be solved analytically if we can expressf (t) as

f (t) = h(t) exp

[
2i
∫ t

0
dτω(τ)

]
whereh(t) is real or imaginary.

TheY (t) andZ(t) are given as

Y (t) = exp

[
− i

∫ t

0
dτ [ω(τ)+ 4f (τ)X(τ)]

]
(12)

Z(t) = −i
∫ t

0
dτ [g∗(τ )+ 2g(τ)X(τ)] exp

[
− i

∫ t

τ

dτ ′[ω(τ ′)+ 4f (τ ′)X(τ ′)]
]
. (13)

Now we consider the special case of the Hamiltonian (3), describing squeezed light generated
by a degenerate parametric amplifier, by setting

f (t) = κ e2iωt . (14)

Then (8) is written as

H0(a
+, α; t) = Hf +HI = ωa+a + κ e2iωta2+ κ e−2iωta+2+ g(t)a + g∗(t)a+ (8b)

and by using equations (11)–(13) we obtain

X(t) = 1

2i
e−2iωt tanh(2κt) (15)

Y (t) = e−iωt sech(2κt) (16)

Z(t) = 1√
V
el(ω)

∫ t

0
dτ ε̂ · r(τ )ζ(τ, t). (17)

Where the functionζ(τ, t) in (17) is given as

ζ(τ, t) = [e2iωτ + ie−2iωτ tanh(2κt)] e−iωt cosh(2κτ)

cosh(2κt)
. (18)

At this point we perform the integration over the field variableα to obtain the reduced
propagator which describes the electron for a field transition from vacuum to vacuum. It is
given as

K̃(rf , ri , t) =
∫

d2αK(αf , rf ;αi, ri; t)αf=αi=α. (19)

The propagator of (10) with diagonal field variables can be written as

K(αf , rf ;αi, ri; t)αf=αi=α =
∫ r(t)=rf

r(0)=ri
Dr(t) exp

[
− i

∫ t

0
dτ

[
v2

τ
(u− V (v(τ ))

]
−1

2
ln cosh(2Kt)+ A− B|α|2+ C

2
α∗2+ C1

2
α2+D1α +Dα∗

]
(20)

where

D(t) = 1√
V
el(ω)

∫ t

0
dτ ε̂ · r(τ )ζ(τ, t) (21a)

D1(t) = − 1√
V
el(ω)

∫ t

0
dτ ε̂ · r(τ )[Y (τ) e−iωt + iθ(τ, t)] (21b)
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C1(t) = −i tanh(2κt) (21c)

C(t) = −ie−2iωt tanh(2κt) (21d)

B(t) = 1− Y (t) (21e)

A(t) = − 1

V
e2l2(ω)

∫ t

0
dτ
∫ τ

0
dρε̂ · r(τ )ε̂ · r(ρ)[ζ(ρ, τ )e−iωτ + iλ(t, τ, ρ)] (21f)

θ(τ, t) andλ(t, τ, ρ) are given as

θ(τ, t) = [e2iωτ + ie−2iωτ tanh(2κτ)] cosh(2κτ)[tanh(2κt)− tanh(2κτ)] (21g)

λ(t, τ, ρ) = [e2iωτ + ie−2iωτ tanh(2κτ)][e2iωρ + ie−2iωρ tanh(2κρ)]

× cosh(2κτ) cosh(2κρ)[tanh(2κt)− tanh(2κρ)]. (21h)

At this point we give the identity∫
exp

[
−B|β|2+ C

2
β∗2+ C1

2
β2+D1β +Dβ∗

]
d2β

= π√
K

exp

{
1

K

[
DD1B +D2C1

2
+D2

1
C

2

]}
(22a)

where

K = B2− CC1 = 1− 2 e−iωt sech(2κt)+ e−2iωt (22b)

and which is valid under the restrictions

ReK > 0 and Re

[
B + C1+ C

2

]
> 0. (22c)

Then the produced propagator can be written as

K̃(rf , ri , t) = π√
N(t)

∫ r(t)=rf

r(0)=ri
Dr(t) exp{iStot[r(t)]} (23a)

where

N(t) = cosh(2κt)− 2 e−iωt + cosh(2κt)e−2 iωt (23b)

and

Stot[r(t)] =
∫ t

0

[
ṙ2(ρ)

2
− V (r(ρ))

]
dρ

+ 1

V
e2l2(ω)

∫ t

0
dρ
∫ ρ

0
dσ ε̂ · r(ρ)ε̂ · r(σ )φ(t, ρ, σ ) (23c)

φ(t, ρ, σ ) is given as

φ(t, ρ, σ ) = −ζ(σ, ρ)e−iωρ − iλ(t, ρ, σ )

− 1

K


B(t)ζ(ρ, t)[Y (σ) e−iωσ + iθ(σ, t)]

+B(t)ζ(σ, t)[Y (ρ) e−iωρ + iθ(ρ, t)]

+C1(t)ζ(ρ, t)ζ(σ, t)

+C(t)[Y (ρ) e−iωρ + iθ(ρ, t)][Y (σ) e−iωσ + iθ(σ, t)]

 . (23d)

The above path integral can be treated perturbatively to obtain any transition probability
we require. Additionally as a by-product we obtain the equation of motion of a free electron
in squeezed light from the first variation of the action (23c) without a potential term. It is
given as

r̈(ρ) = 1

V
2e2l2(ω)ε̂

∫ ρ

0
dσ ε̂ · r(σ )φ(t, ρ, σ ). (24)
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3. Application to the hydrogen atom

Now as an application we calculate the transition probability from the ground state 1s of
the hydrogen atom to the state 3d. This corresponds to the calculation of a transition
amplitude, i.e. the calculation of a certain matrix element between the initial and the final
state. Subsequently the limitt → ∞ is taken so that the transition has been achieved. In
the calculations we use forκ appearing in (3b) the value of 0.9 MHz.

In that case the potential in (23c) is given as

V (r) = −1

r
. (25)

We proceed by first giving the fixed-energy amplitude corresponding to the first two
terms in (23c) as [19]

G′0(r, r
′;E) =

∞∑
l=0

g′l(r, r
′;E)

l∑
m=−l

Ylm(r̂)Y
∗
lm(r̂

′) (26a)

where

g′l(r, r
′;E) = − u

rr ′
0(1+ l − u)
0(2l + 2)

Mu,l+ 1
2

(
2r>
u

)
Wu,l+ 1

2

(
2r<
u

)
(26b)

r> = max(r, r ′) and r< = min(r, r ′) (26c)

u = 1

(−2E)1/2
(26d)

in atomic units.
Mu,l+ 1

2
(r) is the regular andWu,l+ 1

2
(r) the irregular Whittaker function.

The bound-state part of the radial fixed energy amplitude can be written as

g′l,bound(r, r
′;E) =

∞∑
n=l+1

i

E − EnRnl(r)Rnl(r
′). (27)

To a first approximation we use the fixed energy amplitude in the form (27).
The time-dependent functionN(t) appearing in (23a) can be incorporated in the fixed

energy amplitude by using equations (26a) and (27) in the transform (28a) and the numerical
fast Fourier transform in (28b) given below

K ′0(rf , ri , t) =
∫ +∞
−∞

dE

2π
e−iEtG′0(rf , ri , E) (28a)

G0(rf , ri , E) =
∫ +∞

0
dt e−iEt π√

N(t)
K ′0(rf , ri , t). (28b)

The total fixed energy amplitude is given as

G(r, r′;E) = G0(r, r
′;E)− i

∫
G0(r, r

′′;E)W(r′′;E − E′)G(r′′, r′;E′) d3r ′′ dE′ (29)

where

W(r, E) =
∫

dρ eiEρW(r, ρ) (30a)

and

W(r, ρ) = 1

V
αl2(ω)ε̂ · r(ρ)

∫ ρ

0
dσ ε̂ · r(σ )φ(t, ρ, σ ) (30b)

whereα is the fine structure constant.
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Now we perform the Markov approximation on (30b) and obtain the expression

W(r, ρ) = 1

V
αl2(ω)(ε̂ · r(ρ))2ν(t, ρ) (31a)

where

ν(t, ρ) =
∫ ρ

0
dσφ(t, ρ, σ ). (31b)

Up to first order inW the fixed energy propagator is given as

G(r, r′;E) = G0(r, r
′;E)− i

∫
G0(r, r

′′;E)W(r′′, E − E′)G0(r
′′, r′;E′) d3r ′′ dE′ (32)

and the transition amplitudeAf i(t) from the stateψi(r) to ψf (r) is

Af i(t) = − 1

2π i

∫ +∞
−∞

dE〈ψf (r)|G(r, r′;E)|ψi(r′)〉 e−i(E−Ef )t (33)

whereEf is the unperturbed energy of the state|ψf 〉.
In the present applied case of the hydrogen atom and in atomic units the initial 1s state

is given as

|ψi(r)〉 = R10(r)Y00(r̂) = 2 e−r
1√
4π

(34a)

while the final 3d state is given as

|ψf (r)〉 = R32(r)Y20(r̂) = 4

81
√

30
e−r/3r2

√
5

4π

(
3

2
cos2 θ − 1

2

)
. (34b)

The presence of only them = 0 quantum number in the final state is explained via the
application of the Wigner–Eckart theorem (see later).

Now we study the matrix element appearing in (33). On substituting the expression (32)
in (33) we observe that the first term on the right-hand side of (32) is reduced to zero as it
contains only diagonal matrix elements. As far as the second term is concerned, on taking
the matrix elements in (33) only one pole survives from each Green function in (26a–d)
and (27) and the calculations in (28a, b) are straightforward. Taking into account that the
non-diagonal matrix elements of the Green function in (26a–d) and (27) are zero we have
simply to evaluate the matrix element

〈320|W(r, E)|100〉 =
∫

dρ eiEρ〈320|W(r, ρ)|100〉 (35)

where

|nlm〉 = Rnl(r)Ylm(r̂). (36)

As the time dependence of the radial function is concerned, it can be transferred to the
bra and ket states with which it is bracketed via the relation

r(t) = exp(iH0t)r(0) exp(−iH0t) (37)

whereH0 is the Hamiltonian related with the action

S[r(t)] =
∫ t

0

[
ṙ2(ρ)

2
− V (r(ρ))

]
dρ. (38)

On choosing thez-axis in the direction of the polarization vector, and inserting a
complete set of states between the two radial vectors in (31a) we obtain the usual selection
rules l′ = l ± 1, m′ = m for each matrix element after performing the proper integrations.
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We see posteriorly that the final state has correctly been chosen. Use has been made of the
linear polarization case in the Wigner–Eckart theorem, i.e.

〈nlm|ε̂ · r(0)|n′l′m′〉 = 1√
2l′ + 1

〈lm; 10|l′m′〉〈n|r(0)|n′〉. (39)

Now after performing the remaining integrations and using the fact that the transition
probability per second is given by d|Af i(t)|2/dt , we obtain a value of this equal to
1.49× 1016 s−1 or equal to 3.61× 10−1 a.u. for the transition 1s→ 3d mentioned above.

4. Conclusions

In the present paper we investigate transitions induced by squeezed light, generated, for
example, by a degenerate parametric amplifier. In such a case two photons appear almost
‘simultaneously’ called the signal and idler photons respectively. We use path integral
methods and treat the component of the action involving the squeezed electromagnetic field
terms using perturbation theory. In fact in the calculations we have made the Born–Markov
approximation. We apply the author’s methods to the case of a transition in the hydrogen
atom. These methods are tractable and we believe that they give a new aspect on the
interaction of radiation with matter. In the future, we plan to extend the present theory to
the case of many electron atoms as well as many squeezed modes.
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